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Abstract

The stability of vibrations of a mass that moves uniformly along an Euler–Bernoulli beam on a
periodically inhomogeneous continuous foundation is studied. The inhomogeneity of the foundation is
caused by a slight periodical variation of the foundation stiffness. The moving mass and the beam are
assumed to be always in contact. With the help of a perturbation analysis it is shown analytically that
vibrations of the system may become unstable. The physical phenomenon that lies behind this instability is
parametric resonance that occurs because of the periodic (in time) variation of the foundation stiffness
under the moving mass. The first instability zone is found in the system parameters within the first
approximation of the perturbation theory. The location of the zone is strongly dependent on the spatial
period of the inhomogeneity and on the weight of the moving mass. The larger this period is and/or the
smaller the mass, the higher the velocity is at which the instability occurs.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Vibrations of a vehicle moving over a flexible guideway can become unstable. This instability
arises due to the interaction between the vehicle and the guideway and shows itself in the
exponential increase of the amplitude of the vibrations in time. The energy needed for this increase
is supplied by an external source (an engine) that maintains the motion of the vehicle.
If the guideway is modelled as a (long) structure that is homogeneous in the direction of

motion, then the instability can only occur if the vehicle moves with a velocity that exceeds the
minimum phase velocity of waves in the structure [1–8]. In real structures, like a railway track, the
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latter is very high, unless the rails are significantly stressed in the axial direction due to the
temperature extension [4,9,10] or the track is built on a soft soil [6].
Most real guideways are however, periodically inhomogeneous in the longitudinal direction.

For example, a conventional railway track is inhomogeneous because of the sleepers and/or
corrugation of the rail surfaces. A catenary system (for trains or trams) is inhomogeneous due to
the hangers that support the contact wire. A guideway for magnetically levitated trains, being a
multi-span structure, is also a highly inhomogeneous system, etc. There are an impressive number
of papers that deal with dynamics of periodically inhomogeneous guideways, see, for example
[11–17]. To our knowledge, however, only two of these papers [18,19] are devoted to the instability
of a moving vehicle that can arise due to the periodicity of the guideway. In Chung and Genin
[18], the stability of a two-mass oscillator was studied as it moved uniformly on a multi-span
beam. It was shown that the system can loose its stability because of the parametric resonance that
is caused by periodical variation of the guideway stiffness under the moving vehicle. The same
conclusion was drawn in Ref. [19] where the stability of a moving mass on a string supported by a
distributed, periodically inhomogeneous foundation was investigated.
In this paper the stability of a mass is considered as it moves with a constant speed on a beam

that is supported by a periodically inhomogeneous visco-elastic foundation. It is assumed that the
stiffness of this foundation varies slightly about its mean value. With the help of a perturbation
technique, it is shown analytically that vibrations of the system can become unstable as the mass
moves with certain velocities that are substantially smaller than the minimum phase velocity of
waves in the respective homogeneous structure.

2. The model and the governing equations

Fig. 1 shows the model under consideration, which is composed of a moving mass and an
Euler–Bernoulli beam on a visco-elastic foundation. The mass moves along the beam uniformly,
with a constant velocity V and remains always in contact with the beam. The stiffness of the
foundation varies periodically along the beam and is defined by the following expression:

kðxÞ ¼ kf ð1þ m cosðwxÞÞ; w ¼ 2p=d; ð1Þ

with kf the mean stiffness of the foundation, d the period of the inhomogeneity, w the wave
number of the inhomogeneity and m51 a dimensionless small parameter.
The governing equations that describe small vertical vibrations of the system are
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with wðx; tÞ and w0ðtÞ the vertical deflections of the beam and the mass relative to their equilibrium
positions, E and r are Young’s modulus and the mass density of the beam’s material, Acs the
cross-sectional area of the beam, I the moment of inertia of the beam’s cross-section, mnf the small
viscosity of the foundation, dðyÞ the Dirac delta function and where the square brackets indicate
the difference between the bracketed quantities on either side of the limit x ¼ Vt; for example
½w�x¼Vt ¼ wðx ¼ Vt þ 0; tÞ � wðx ¼ Vt � 0; tÞ:
The first equation of the system (2) gives the dynamic balance of forces acting on a differential

element of the beam. Equations ½x�x¼Vt ¼ 0 and ½@w=@x�x¼Vt ¼ 0 ensure that the deflection of the
beam and its slope are continuous in the contact point. Equation ½@2w=@x2�x¼Vt ¼ 0 implies that
there is no external moment applied at the contact point. Equation wjx¼Vt¼ u0 is the continuity
condition that implies that the mass and the beam are always in contact.
The last equation of the system is the balance of vertical forces that act on the moving mass.

Note that in this equation the dead weight of the mass mg can be omitted in the further
investigation. This can be done deliberately since this weight (external constant force) may not
influence the system stability. In the simplest case of a homogeneous foundation kðxÞ ¼ kf ¼
const there is a critical velocity Vcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kf EI=m2

p
for which the beam displacement grows linearly

in time. Usually, in the case of a periodically inhomogeneous foundation such an effect occurs if
the normal frequency of the mass equals the frequency of inhomogeneity in the contact point.
Because of these reasons the term mg is omitted from the right-hand part of the last equation in
Eq. (2) since the interest is to determine whether the beam displacement grows in time
exponentially.
Since the inhomogeneity of the beam’s foundation is small, a perturbation technique [20] can be

applied to analyze the system of Eq. (2). The basic idea of the technique that will be first applied is
that the presence of a small inhomogeneity cannot significantly influence the solution to the
problem. Therefore, this solution can be sought in the following form:

wðx; tÞ ¼ wð0Þðx; tÞ þ mwð1Þðx; tÞ þ?; w0ðtÞ ¼ w
ð0Þ
0 ðtÞ þ mw

ð1Þ
0 ðtÞ þ?; ð3Þ

where wð0Þðx; tÞ and w
ð0Þ
0 ðtÞ are solutions to the unperturbed problem, e.g., to the system of Eq. (2)

in which the small parameter m is set to zero. Physically, these solutions describe vibrations of the
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Fig. 1. Uniform motion of a mass along a beam on a periodically inhomogeneous foundation.
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moving mass on a beam that is supported by a homogeneous visco-elastic foundation with the
stiffness kf [1,4]. Obviously, the governing equations for the unperturbed problem are
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The second terms mwð1Þðx; tÞ and mw
ð1Þ
0 ðtÞ in expressions (3) should be much smaller than wð0Þðx; tÞ

and w
ð0Þ
0 ðtÞ; respectively. To find the system of equations for the variables wð1Þðx; tÞ and w

ð1Þ
0 ðtÞ;

expressions (3) have to be substituted into the system of Eq. (2) after which all terms that are
proportional to m should be gathered. With the use of expression (1) this yields
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Thus, to study the original problem (2), first, the unperturbed problem (4) should be solved.
Second, the unperturbed solutions wð0Þðx; tÞ and w

ð0Þ
0 ðtÞ have to be substituted into the system of

Eq. (5), in which these solutions coupled with the inhomogeneity will serve as an excitation. In the
next Section the first step of this analysis is accomplished, e.g., the unperturbed problem is
studied.

3. Solution to the unperturbed problem

The system of Eq. (4) that describes vibrations of the moving mass on a beam that is supported
by a homogeneous visco-elastic foundation has been studied in Refs. [1,4]. As shown in Ref. [4],
the characteristic equation that defines the natural frequencies of vibrations of the mass on the
beam is given as

mO
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where i ¼
ffiffiffiffiffiffiffi
�1

p
; O the natural frequency and kn; n ¼ 1;y; 4 the roots of the equation

�rAcsðO� kV Þ2 þ EIk4 þ kf þ inf ðO� kV Þ ¼ 0; ð7Þ
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that have a positive imaginary part and calculated with nf -0: In this limit, which implies a
transition to a system with infinitely small damping, Eq. (7) reduces to the following dispersion
equation for the beam on the elastic foundation (in the reference system that moves together with
the mass):

�rAcsðO� kV Þ2 þ EIk4 þ kf ¼ 0: ð8Þ

By using the technique presented in Refs. [1,4], it can be shown that if the velocity of the
mass is smaller than the minimum phase velocity of waves in the beam on the inhomogeneous
foundation, e.g., if VoVmin

ph ¼ ð4kf EI=r2A2
csÞ

1=4; then the roots of the characteristic Eq. (6)
are real. This implies that the heave vibrations of the moving mass on the beam are harmonic in
this case.
Obviously, the mass can vibrate harmonically if and only if these vibrations do not perturb

waves in the beam (otherwise, the radiation damping would cause decay of the vibrations).
Mathematically, this implies that the wave numbers that are found as the roots of the dispersion
Eq. (8) may not be real. The system of inequalities that does not permit the roots of Eq. (8) to be
real can be found analytically to give
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In accordance with system (9) the frequency of harmonic vibrations of the mass cannot be larger
that a certain critical value O	ðV Þ that depends on the velocity of the mass. This dependence,
which is normally referred to as a bifurcation curve, is depicted in Fig. 2 by the solid line. This
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Fig. 2. Bifurcation curve and the natural frequency of the mass versus velocity for two different magnitudes of the

mass: —, bifurcation curve, – – – m ¼ 1000 kg; – 
 –, m ¼ 2000 kg.
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figure was drawn by using the following set of the system parameters:

r ¼ 7849 kg; Acs ¼ 7:687� 10�3 m2; I ¼ 3:055� 10�5 m4;

E ¼ 2� 1011 N=m2; kf ¼ 108 N=m2 ð10Þ

This set describes a realistic rail and a statically measured stiffness of the subsoil.
Thus, the natural frequency of the mass must lie within the domain bounded by the solid line in

Fig. 2. As follows from the characteristic Eq. (6), this frequency depends on the velocity and the
magnitude of the mass. The dependence of the natural frequency on the velocity, calculated in
accordance with the characteristic Eq. (6) is presented in Fig. 2 for two different magnitudes of the
mass, namely for m ¼ 1000 kg and m ¼ 2000 kg: The figure shows that the smaller the mass,
the closer is the natural frequency to the critical frequency O	ðV Þ (to the bifurcation curve). The
larger the mass, the smaller is its natural frequency.
Fig. 2 clearly shows that if the velocity of the mass is smaller than the minimum phase

velocity Vmin
ph of waves in the beam, which is given by the crossing point of the bifurcation

curve with the vertical axis (approximately 900 m=s), then the natural vibrations of the mass
are harmonic. Of course, for the mass to start vibrating harmonically a certain time is needed
in order for the transient oscillations related to the initial conditions to have disappeared.
Thus, it is possible to declare that if VoVmin

ph ; then in the limit t-N vibrations of a mass
that uniformly moves along the beam on the homogeneous elastic foundation can be
described as

u
ð0Þ
0 ðtÞ ¼ AexpðiOtÞ þ Bexpð�iOtÞ; ð11Þ

with O the natural frequency (real) and A;B as unknown constants. Deflection of the beam that
corresponds to these vibrations of the mass can be found from the system of Eq. (4) by looking for
the solution wð0Þðx; tÞ in the following form:

wð0Þðx; tÞ ¼
X

n

ðCAn expðiOtÞ expðikA
n ðVt � xÞÞ þ CBn expð�iOtÞ expðikB

n ðVt � xÞÞÞ: ð12Þ

In expression (12), the subscripts and superscripts A and B show that the vibrations of the beam
correspond to the mass vibrations of the form A expðiOtÞ and B expð�iOtÞ; respectively. Further,
CAn and CBn are unknown constants, while kA

n and kB
n are complex wavenumbers that satisfy the

dispersion Eq. (8).
Substituting expression (12) into the system of Eq. (4), the unknown constants CAn and CBn can

be found to give
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In this expression, ImðkA;B
1;2 Þo0; ImðkA;B

3;4 Þ > 0; which fulfils the condition that the beam deflection
should vanish as x � Vtj j-N: The constants C7

A1;A2;B1;B2 are given in Appendix A. Expression
(13) describes a deflection field in the beam that moves together with the mass and decays
exponentially (having spatial oscillations) with the distance from the mass.
Thus, the unperturbed problem (4) has been solved, and the solution is given by expressions

(11) and (13). The effect of the small inhomogeneity and small viscosity can be analysed by solving
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the system of Eq. (5). This is accomplished in the next section, whose title involves the term ‘‘non-
resonance case’’ due to the reasons that will become clear later.

4. Perturbation analysis in the non-resonance case

In this section the system of Eq. (5) is studied that determines the influence of the small
inhomogeneity of the foundation on vibrations of the mass and the beam. The viscosity of the
foundation is temporarily assumed to be equal to zero, e.g., nf ¼ 0: Substituting the unperturbed
solutions (11) and (13) into this system, and representing cosðwxÞ as ðexpðiwxÞ þ expð�iwxÞÞ=2; the
following equations of motion for the beam before and behind the mass are obtained:

For x > Vt;
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For xoVt;
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The boundary conditions at x ¼ Vt remain unchanged:
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To solve the system of Eqs. (14)–(16), it is customary to look for the solution in the following
form:

wð1Þ ¼ w
ð1Þ
free þ w

ð1Þ
forced ð17Þ

with w
ð1Þ
forced the forced solution to Eqs. (14) and (15). This forced solution describes the effect of

the inhomogeneity on the deflection field in the beam that is generated by the moving and
vibrating mass. The expression for w

ð1Þ
forced can be found straightforwardly to give
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For x > Vt:
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with the constants C7
ij ; i ¼ 1;y; 4; j ¼ 1; 2 defined in Appendix A.

Substituting (17) into the system of Eqs. (14)–(16), taking into account that w
ð1Þ
forced is the

solution to Eqs. (14) and (15), and making use of solutions (18) and (19), the following system of
equations is obtained with respect to w

ð1Þ
free:
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It is easy to see that the system of Eq. (20) is analogous to the system of Eq. (4), which
describes the vibrations of the mass on the homogeneous beam. The only difference between
these two systems is that the boundary conditions at x ¼ Vt contain the right sides that describe
‘‘forces’’ that act in the contact force because of the inhomogeneity of the foundation. All these
‘‘forces’’ are harmonic and have frequencies equal to 7ðO7VwÞ: Thus, since it is known that
the natural frequency of the mass on the homogeneous beam is equal to O; it can be concluded
that resonance ðwð1Þ

free-NÞ will take place in the system if one of the following four equations is
satisfied:

O ¼ 7ðO7VwÞ ð21Þ

Only one of the Eqs. (21) can be satisfied, namely the equation O ¼ �Oþ Vw (the other
equations cannot be satisfied since O; V and w are positive values). The solution to this
equation is

Vw ¼ 2O: ð22Þ

Thus, if relation (22) were to be satisfied, then the solution w
ð1Þ
free would tend to infinity. This would

imply that wð0Þðx; tÞ5mwð1Þðx; tÞ and, therefore, the original assumption that the small
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inhomogeneity provides a small variation of the unperturbed solution is violated. As a
consequence, series (3) become divergent.
The conclusion, which has to be drawn from this fact, is that the perturbation technique

based on representation (3) is not applicable once relation (22) is satisfied. In Ref. [21],
however, in the analysis of the Mathieu equation, it is shown that the perturbation technique
can be modified to give a relevant solution for the case when relation (22) is satisfied. In this
book, this case was referred to as resonance case, which is a reasonable terminology to
be used.
The modification of the perturbation method is presented in the next section. Before starting

with this section, however, it is worth noting that relation (22) is fully analogous to the condition
of the parametric resonance in the Mathieu’s equation [21,22]. This equation describes, for
example, vibrations of a mass on a spring, whose stiffness varies harmonically in time. If the
Mathieu’s equation is written in the form

.x þ o2
0xð1þ m cosðoptÞÞ ¼ 0; ð23Þ

then the condition for the parametric resonance (more precisely, for the first zone of the
resonance) is given as

2o0Eop: ð24Þ

Condition (24) implies that the parametric resonance (that contains in an exponential increase
of the amplitude of vibrations) occurs if the doubled natural frequency of the unperturbed
mass–spring system is approximately equal to the frequency of the variation of the spring
stiffness.
The analogy between conditions (22) and (24) is evident. Indeed, the natural frequency O of the

mass vibrations on the homogeneous beam is the direct analogy to o0; whereas the frequency wV
represents the frequency of variation of the stiffness of the elastic foundation under the moving
mass.
Taking this analogy into account it is natural to expect that vibrations of the moving mass on

the periodically inhomogeneous beam can become unstable due to the parametric resonance as
happens in the systems described by the Mathieu’s equation. Correctness of this expectation is
proven in the following section.

5. Perturbation analysis in the resonance case

In this section, the original problem (2) is studied in the resonance case, in which the relation
(22) is approximately satisfied, e.g., the following relation holds

w ¼
2ðOþ mdÞ

V
; ð25Þ

with md5O a small mistuning.
The study is accomplished in the following manner. First, as in the previous section, the results

are obtained for the undamped case nf ¼ 0: The viscosity is taken into account later giving a
generalisation of the results.
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By analogy with the principle used in [21] for the analysis of the parametric resonance in the
Mathieu’s equation, a solution to problem (2) is sought for in the following form:

u0ðtÞ ¼ AðmtÞeitðOþmdÞ þ BðmtÞe�itðOþmdÞ þ mw
ð1Þ
0 ðtÞ;

wðx; tÞ ¼ mwð1Þðx; tÞ þ

eitðOþmdÞðCþ
A1ðmx;mtÞeik

A
1
ðVt�xÞ þ Cþ

A2ðmx;mtÞeik
A
2
ðVt�xÞÞ

þe�itðOþmdÞðCþ
B1ðmx; mtÞeik

B
1
ðVt�xÞ þ Cþ

B2ðmx; mtÞeik
B
2
ðVt�xÞÞ; x > Vt;

eitðOþmdÞðC�
A1ðmx;mtÞeik

A
3
ðVt�xÞ þ C�

A2ðmx;mtÞeik
A
4
ðVt�xÞÞ

þe�itðOþmdÞðC�
B1ðmx; mtÞeik

B
3
ðVt�xÞ þ C�

B2 mx; mtð ÞeikB
4

Vt�xð ÞÞ; xoVt;

8>>>>><
>>>>>:

ð26Þ

with kA;B
1;2;3;4 the roots of the dispersion Eq. (8).

Expressions (26) are similar to solution (3) (in which expressions (11) and (13) are substituted)
with the only difference being that the amplitudes of waves and vibrations are assumed to have a
weak dependence on time and the spatial co-ordinate. It will be seen that introduction of this
dependence constrains the perturbation terms mw

ð1Þ
0 tð Þ and mwð1Þ x; tð Þ to be much smaller than the

modified unperturbed solution. Actually, the following analysis is based on the principle of
finding the slowly varying amplitudes for the unperturbed solution so that the perturbation terms
remain small. Fulfilling this requirement, a relation between the system parameters can be found
that corresponds to a slow increase of the amplitude of the system vibrations in time, e.g. to the
parametric resonance.
Substituting expressions (26) into the system of Eq. (2) and collecting the terms of the order m0;

the system of equations is obtained that is presented in Appendix B. As shown in this appendix,
this system of equations is satisfied independently of the choice of the amplitudes C7

Aj and C7
Bj :

Collecting the terms of the order m1; the following system of equations is obtained:

For x > Vt;

rAcs

@2wð1Þ

@t2
þ EI

@4wð1Þ

@x4
þ kf wð1Þ

¼ �kf cosðwxÞeitðOþmdÞðCþ
A1ðmx; mtÞeik

A
1
ðVt�xÞ þ Cþ

A2ðmx; mtÞeik
A
2
ðVt�xÞÞ

� kf cosðwxÞe�itðOþmdÞ Cþ
B1ðmx;mtÞeik

B
1
ðVt�xÞ þ Cþ

B2ðmx;mtÞeik
B
2
ðVt�xÞ

� �
� 2rAcsðVkA

1 þ OÞ i
@Cþ

A1

@ðmtÞ
� dCþ

A1

� �
þ 4iEIðkA

1 Þ
3 @Cþ

A1

@ðmxÞ

� �
expðikA

1 ðVt � xÞ þ itðOþ mdÞÞ

� 2rAcsðVkA
2 þ OÞ i

@Cþ
A2

@ðmtÞ
� dCþ

A2

� �
þ 4iEIðkA

2 Þ
3 @Cþ

A2

@ðmxÞ

� �
expðikA

2 ðVt � xÞ þ itðOþ mdÞÞ

� 2rAcsðVkB
1 � OÞ i

@Cþ
B1

@ðmtÞ
þ dCþ

B1

� �
þ 4iEIðkB

1 Þ
3@Cþ

B1

@ðmxÞ

� �
expðikB

1 ðVt � xÞ � itðOþ mdÞÞ

� 2rAcsðVkB
2 � OÞ i

@Cþ
B2

@ðmtÞ
þ dCþ

B2

� �
þ 4iEIðkB

2 Þ
3@Cþ

B2

@ðmxÞ

� �
expðikB

2 ðVt � xÞ � itðOþ mdÞÞ:

ð27Þ
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For xoVt;

rAcs
@2wð1Þ

@t2
þ EI

@4wð1Þ

@x4
þ kf wð1Þ

¼ �kf cosðwxÞeitðOþmdÞðC�
A1ðmx;mtÞeik

A
3
ðVt�xÞ þ C�

A2ðmx;mtÞeik
A
4
ðVt�xÞÞ

� kf cosðwxÞe�itðOþmdÞðC�
B1ðmx;mtÞeik

B
3
ðVt�xÞ þ C�

B2ðmx; mtÞeik
B
4
ðVt�xÞÞ

� 2rAcsðVkA
3 þ OÞ i

@C�
A1

@ðmtÞ
� dC�

A1

� �
þ 4iEIðkA

3 Þ
3 @C�

A1

@ðmxÞ

� �
expðikA

3 ðVt � xÞ þ itðOþ mdÞÞ

� 2rAcsðVkA
4 þ OÞ i

@C�
A2

@ðmtÞ
� dC�

A2

� �
þ 4iEIðkA

4 Þ
3@C�

A2

@ðmxÞ

� �
expðikA

4 ðVt � xÞ þ itðOþ mdÞÞ

� 2rAcsðVkB
3 � OÞ i

@C�
B1

@ðmtÞ
þ dC�

B1

� �
þ 4iEIðkB

3 Þ
3@C�

B1

@ðmxÞ

� �
expðikB

3 ðVt � xÞ � itðOþ mdÞÞ

� 2rAcsðVkB
4 � OÞ i

@C�
B2

@ðmtÞ
þ dC�

B2

� �
þ 4iEIðkB

4 Þ
3@C�

B2

@ðmxÞ

� �
expðikB

4 ðVt � xÞ � itðOþ mdÞÞ ð28Þ

For x ¼ Vt;

½wð1Þ�x¼Vt ¼ 0; ð29Þ

@wð1Þ

@x

� �
x¼Vt

¼ � eitðOþmdÞ @Cþ
A1

@ðmxÞ
þ

@Cþ
A2

@ðmxÞ
�

@C�
A1

@ðmxÞ
�

@C�
A2

@ðmxÞ

� �
x¼Vt

� e�itðOþmdÞ @Cþ
B1

@ðmxÞ
þ

@Cþ
B2

@ðmxÞ
�

@C�
B1

@ðmxÞ
�

@C�
B2

@ðmxÞ

� �
x¼Vt

; ð30Þ

q2wð1Þ

qx2

� �
x¼Vt

¼ 2ieitðOþmdÞ kA
1

qCþ
A1

qðmxÞ
þ kA

2

qCþ
A2

qðmxÞ
� kA

3

qC�
A1

qðmxÞ
� kA

4

qC�
A2

qðmxÞ

� �
x¼Vt

þ 2ie�itðOþmdÞ kB
1

qCþ
B1

qðmxÞ
þ kB

2

qCþ
B2

qðmxÞ
� kB

3

qC�
B1

qðmxÞ
� kB

4

qC�
B2

qðmxÞ

� �
x¼Vt

; ð31Þ

wð1ÞðVt; tÞ ¼ w
ð1Þ
0 ðtÞ; ð32Þ

EI
@3wð1Þ

@x3

� �
x¼Vt

¼ � m
d2w

ð1Þ
0

dt2
þ eitðOþmdÞ �2mO i

@A

@ðmtÞ
� dA

� ��

þ 3EI ðkA
1 Þ

2 @Cþ
A1

@ðmxÞ
þ ðkA

2 Þ
2 @Cþ

A2

@ðmxÞ

�
�ðkA

3 Þ
2 @C�

A1

@ðmxÞ
� ðkA

4 Þ
2 @C�

A2

@ðmxÞ

��
x¼Vt

þ e�itðOþmdÞ 2mO i
@B

@ðmtÞ
þ dB

� ��

þ3EI ðkB
1 Þ

2 @Cþ
B1

@ðmxÞ
þ ðkB

2 Þ
2 @Cþ

B2

@ðmxÞ
� ðkB

3 Þ
2 @C�

B1

@ðmxÞ
� ðkB

4 Þ
2 @C�

B2

@ðmxÞ

� ��
x¼Vt

: ð33Þ

For the perturbation method to be applicable, the perturbation terms wð1Þ x; tð Þ and w
ð1Þ
0 tð Þ

should be prohibited from increasing with time. To achieve this, all forces that act on the beam
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and on the mass and which can cause resonance must be set to zero. There are two types of forces
that disturb the system: the distributed ones that stay on the right-hand side of Eqs. (27) and (28),
and the concentrated ones that enter the boundary condition (33). Note that the external moment
in the boundary condition (31) cannot activate the heave vibrations of the mass.
Consider first the distributed forces in Eqs. (27) and (28). It is obvious that the last four terms

on the right-hand side of these equations would cause the resonance response since they are
proportional to the normal waves in the beam: expð7iOtÞ expðikA;B

1;2;3;4ðVt � xÞÞ: Thus, it is
necessary that these terms vanish, e.g.,

2rAcsðVkA
1 þ OÞ i

@Cþ
A1

@ðmtÞ
� dCþ

A1

� �
þ 4iEIðkA

1 Þ
3 @Cþ

A1

@ðmxÞ
¼ 0;

2rAcsðVkA
2 þ OÞ i

@Cþ
A2

@ðmtÞ
� dCþ

A2

� �
þ 4iEIðkA

2 Þ
3 @Cþ

A2

@ðmxÞ
¼ 0;

2rAcsðVkB
1 þ OÞ i

@Cþ
B1

@ðmtÞ
þ dCþ

B1

� �
þ 4iEIðkB

1 Þ
3 @Cþ

B1

@ðmxÞ
¼ 0;

2rAcsðVkB
2 � OÞ i

@Cþ
B2

@ðmtÞ
þ dCþ

B2

� �
þ 4iEIðkB

2 Þ
3 @Cþ

B2

@ðmxÞ
¼ 0;

2rAcsðVkA
3 þ OÞ i

@C�
A1

@ðmtÞ
� dC�

A1

� �
þ 4iEIðkA

3 Þ
3 @C�

A1

@ðmxÞ
¼ 0;

2rAcsðVkA
4 þ OÞ i

@C�
A2

@ðmtÞ
� dC�

A2

� �
þ 4iEIðkA

4 Þ
3 @C�

A2

@ðmxÞ
¼ 0;

2rAcsðVkB
3 � OÞ i

@C�
B1

@ðmtÞ
þ dC�

B1

� �
þ 4iEIðkB

3 Þ
3 @C�

B1

@ðmxÞ
¼ 0;

2rAcsðVkB
4 � OÞ i

@C�
B2

@ðmtÞ
þ dC�

B2

� �
þ 4iEIðkB

4 Þ
3 @C�

B2

@ðmxÞ
¼ 0: ð34Þ

Thus, the distributed forces that could cause the increase of the beam vibrations have been
required to vanish. However, some of the remaining forces on the right-hand of Eqs. (27) and (28)
could also lead to resonance in the system. These are the forces whose frequency equals to
ðOþ mdÞ in the contact point. The other forces cannot lead to resonance and, therefore, are not
relevant for the further analysis that is aimed at finding the conditions under which the
perturbation terms do not increase.
Considering relations (34) satisfied, and neglecting the non-resonance terms on the right sides (the

terms whose frequency is not equal to ðOþ mdÞ at x ¼ Vt), Eqs. (27) and (28) are rewritten as follows

For x > Vt;

rAcs

@2wð1Þ

@t2
þ EI

@4wð1Þ

@x4
þ kf wð1Þ

¼ �
kf

2
expð�iwxÞeitðOþmdÞðCþ

A1ðmx; mtÞeik
A
1
ðVt�xÞ þ Cþ

A2 mx; mtð Þeik
A
2
ðVt�xÞÞ

�
kf

2
expðiwxÞe�itðOþmdÞðCþ

B1 mx;mtð Þeik
B
1
ðVt�xÞ þ Cþ

B2ðmx; mtÞeik
B
2
ðVt�xÞÞ: ð35Þ
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For xoVt;

rAcs
@2wð1Þ

@t2
þ EI

@4wð1Þ

@x4
þ kf wð1Þ

¼ �
kf

2
expð�iwxÞeitðOþmdÞðC�

A1ðmx; mtÞeik
A
3
ðVt�xÞ þ C�

A2ðmx; mtÞeik
A
4
ðVt�xÞÞ

�
kf

2
expðiwxÞe�itðOþmdÞðC�

B1ðmx;mtÞeik
B
3
ðVt�xÞ þ C�

B2ðmx; mtÞeik
B
4
ðVt�xÞÞ: ð36Þ

It is customary to seek for the solution of these equations in the form

wð1Þ ¼ w
ð1Þ
free þ w

ð1Þ
forced ð37Þ

with w
ð1Þ
forced the forced solution of Eqs. (27) and (28) that describes the effect of the foundation

inhomogeneity on the deflection field, which the mass perturbs in the beam. This solution reads:

For x > Vt;

w
ð1Þ
forced ¼ eitðOþmdÞ�iwxð *Cþ

11ðmx; mtÞeik
A
1
ðVt�xÞ þ *Cþ

12ðmx; mtÞeik
A
2
ðVt�xÞÞ

þ e�itðOþmdÞþiwxð *Cþ
21ðmx;mtÞeik

B
1
ðVt�xÞ þ *Cþ

22ðmx; mtÞeik
B
2
ðVt�xÞÞ: ð38Þ

For xoVt;

w
ð1Þ
forced ¼ eitðOþmdÞ�iwxð *C�

11ðmx; mtÞeik
A
3
ðVt�xÞ þ *C�

12ðmx;mtÞeik
A
4
ðVt�xÞÞ

þ e�itðOþmdÞþiwxð *C�
21ðmx; mtÞeik

B
3
ðVt�xÞ þ *C�

22ðmx;mtÞeik
B
4
ðVt�xÞÞ ð39Þ

with the constants *C7
ij ; i ¼ 1;y; 4; j ¼ 1; 2 defined in Appendix C.

Substituting representation (37) and expressions (38) and (39) into the boundary condition (33),
the following equation is obtained

EI
@3wð1Þ

free

@x3

" #
x¼Vt

þm
d2w

ð1Þ
0

dt2
¼ eitðOþmdÞ �2mO i

@A

@ðmtÞ
� dA

� ��

þ 3EI ðkA
1 Þ

2 @Cþ
A1

@ðmxÞ
þ ðkA

2 Þ
2 @Cþ

A2

@ðmxÞ
� ðkA

3 Þ
2 @C�

A1

@ðmxÞ
� ðkA

4 Þ
2 @C�

A2

@ðmxÞ

� �

� EIðiðkB
1 � wÞ3 *Cþ

21 þ iðkB
2 � wÞ3 *Cþ

22 � iðkB
3 � wÞ3 *C�

21 � iðkB
4 � wÞ3 *C�

22Þ

)
x¼Vt

þ e�itðOþmdÞ 2mO i
@B

@ðmtÞ
þ dB

� ��

þ 3EI ðkB
1 Þ

2 @Cþ
B1

@ðmxÞ
þ ðkB

2 Þ
2 @Cþ

B2

@ðmxÞ
� ðkB

3 Þ
2 @C�

B1

@ðmxÞ
� ðkB

4 Þ
2 @C�

B2

@ðmxÞ

� �

�EIðiðkA
1 þ wÞ3 *Cþ

11 þ iðkA
2 þ wÞ3 *Cþ

12 � iðkA
3 þ wÞ3 *C�

11 � iðkA
4 þ wÞ3 *C�

12Þ

)
x¼Vt

:

ð40Þ
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Both terms, which stay in the figure brackets on the right-hand of Eq. (40), should cause
resonance in the system, since their frequency is equal to the natural frequency of the mass. Thus,
these terms must be required to vanish, which yields the following two equations:

�2mO i
@A

@ðmtÞ
� dA

� �
þ 3EI ðkA

1 Þ
2 @Cþ

A1

@ðmxÞ
þ ðkA

2 Þ
2 @Cþ

A2

@ðmxÞ
� ðkA

3 Þ
2 @C�

A1

@ðmxÞ
� ðkA

4 Þ
2 @C�

A2

@ðmxÞ

� ��
�EIðiðkB

1 � wÞ3 *Cþ
21 þ iðkB

2 � wÞ3 *Cþ
22 � iðkB

3 � wÞ3 *C�
21 � iðkB

4 � wÞ3 *C�
22Þ
�

x¼Vt
¼ 0;

2mO i
@B

@ðmtÞ
þ dB

� �
þ 3EI ðkB

1 Þ
2 @Cþ

B1

@ðmxÞ
þ ðkB

2 Þ
2 @Cþ

B2

@ðmxÞ
� ðkB

3 Þ
2 @C�

B1

@ðmxÞ
� ðkB

4 Þ
2 @C�

B2

@ðmxÞ

� ��
�EIðiðkA

1 þ wÞ3 *Cþ
11 þ iðkA

2 þ wÞ3 *Cþ
12 � iðkA

3 þ wÞ3 *C�
11 � iðkA

4 þ wÞ3 *C�
12Þ
�

x¼Vt
¼ 0: ð41Þ

Eqs. (34) and (41) are sufficient conditions for the perturbed solutions terms wð1Þðx; tÞ and w
ð1Þ
0 ðtÞ

not to grow in time.
The solution to these equations can be sought in the form

Cþ
A1ðmx;mtÞ ¼ Cþ

A10expðmðq
A
1 t � pA

1 xÞÞ; Cþ
A2ðmx;mtÞ ¼ Cþ

A20expðmðq
A
2 t � pA

2 xÞÞ;

Cþ
B1ðmx;mtÞ ¼ Cþ

B10expðmðq
B
1 t � pB

1 xÞÞ; Cþ
B2ðmx;mtÞ ¼ Cþ

B20expðmðq
B
2 t � pB

2 xÞÞ;

C�
A1ðmx;mtÞ ¼ C�

A10expðmðq
A
3 t � pA

3 xÞÞ; C�
A2ðmx;mtÞ ¼ C�

A20expðmðq
A
4 t � pA

4 xÞÞ;

C�
B1ðmx;mtÞ ¼ C�

B10expðmðq
B
3 t � pB

3 xÞÞ; C�
B2ðmx;mtÞ ¼ C�

B20expðmðq
B
4 t � pB

4 xÞÞ;

AðmtÞ ¼ A0 expðmstÞ; BðmtÞ ¼ B0 expðmstÞ:

ð42Þ

The eigenvalue s in these expressions determines the stability of the system. Should one of the
eigenvalues have a positive real part, the system would become unstable. To obtain the
characteristic equation with respect to s; it is customary to use Eqs. (B.3)–(B.6). Substituting
expressions (42) into these equations, a set of relations (D.1) is obtained that is presented in
Appendix D. Taking these relations into account and substituting expressions (42) into the
Eqs. (34) and (41), the following system of two algebraic equations with respect to A0 and B0 can
be obtained:

ðis � dÞQ1A0 þ Q4B0 ¼ 0;

� Q3A0 þ Q2ðis þ dÞB0 ¼ 0: ð43Þ

The characteristic equation is obtained from the system of Eqs. (43) by setting the determinant
of this system to zero. This yields

s2 ¼ �d2 þ
Q3Q4

Q1Q2
: ð44Þ

It can be shown that the ratio ðQ3Q4Þ=ðQ1Q2Þ is real and positive in the case under consideration
ðVoVmin

ph Þ: Therefore, the criterion for the instability (parametric resonance) to occur is that s2 is
real. Thus, the vibrations of the system are unstable if the following inequality is satisfied:

�d2 þ
Q3Q4

Q1Q2
> 0;
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This inequality can be rewritten by using the resonance condition (25) as

wV � 2Oj jo2m

ffiffiffiffiffiffiffiffiffiffiffiffi
Q3Q4

Q1Q2

s
: ð45Þ

If the viscosity of the foundation nf is not equal to zero, exactly the same procedure can be
employed to obtain the characteristic equation. This equation then takes the form

s2 � i
Q5

Q1

þ
Q6

Q2

� �
s � d

Q5

Q1

�
Q6

Q2

� �
þ d2 �

Q3Q4

Q1Q2
�

Q5Q6

Q1Q2
¼ 0; ð46Þ

with the same expressions for Q1;2;3;4 that are used in Eq. (44) and the constants Q5;6 defined in
Appendix D.
The criterion for the instability in this case is that one of the roots of the characteristic equation

has a positive real part. It can be shown that this criterion leads to the following system of
inequalities, which being satisfied leads to vibrational instability:

� Q2
2Q

2
5 � Q2

1Q
2
6 þ 2Q1Q2Q5Q6 þ 4Q1Q2Q3Q4 � 4d dQ1Q2 � Q5Q2 þ Q1Q6ð Þ > 0;

Q6

2Q2
þ

Q5

2Q1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Q2

2Q
2
5 � Q2

1Q
2
6 þ 2Q1Q2Q5Q6 þ 4Q1Q2Q3Q4 � 4d dQ1Q2 � Q5Q2 þ Q1Q6ð Þ

q
2Q1Q2

> 0:

ð47Þ

The study of the instability zones that correspond to conditions (45) and (47) is carried out in
the next section. Before starting this study, however, it is important to note the following. The
instability conditions (45) and (47) determine the first (main) instability zone of the parametric
resonance. By analogy with the Mathieu’s equation, it is natural to assume that there are more
zones of the instability, which should occur under the condition wV ¼ 2ðO=n þ mdÞ; n ¼ 1; 2;y:
To find these zones, one should modify the form of solution (26). The idea for such a modification
should be taken from Ref. [21], where the same approach is used in the analysis of the higher order
zones of the parametric resonance in the Mathieu’s equation.

6. The instability zone

In this section, the instability zone is studied numerically. The study is performed using the
following set of the system parameters:

r ¼ 7849 kg; Acs ¼ 7:687� 10�3 m2;

I ¼ 3:055� 10�5 m4; E ¼ 2� 1011 N=m2;

kf ¼ 108 N=m2; m ¼ 0:3: ð48Þ

First, the instability zone is studied in the case of the purely elastic foundation, e.g., with nf ¼ 0:
In this case the instability zone is defined by the inequality (45). In Fig. 3 the centre of the
instability zone ðwV � 2O ¼ 0Þ is plotted in the plane ‘‘velocity-mass’’ for two periods of the
inhomogeneity. These periods are chosen to represent the upper and the lower limits of the sleeper
distance utilised in different types of the railway tracks. Fig. 3 shows that the larger the moving
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mass and/or the smaller the period of the inhomogeneity, the smaller is the velocity at which the
instability occurs.
In accordance with inequality (45), the boundaries of the instability zone are given by the

equations

wV � 2O ¼ 72m

ffiffiffiffiffiffiffiffiffiffiffiffi
Q3Q4

Q1Q2

s
: ð49Þ

Because of the small parameter m; the deviation of these boundaries from the centre of the zone is
small and can be found in the following manner. Representing the velocity that corresponds to the
boundary of the zone as V ¼ V0 þ m *V with V0 the velocity corresponding to the centre of the zone
and m *V the small deviation of the velocity, Eq. (49) are rewritten as

ðV0 þ m *VÞw� 2 OðV0 þ m *VÞ7m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3ðV0 þ m *VÞQ4ðV0 þ m *VÞ
Q1ðV0 þ m *VÞQ2ðV0 þ m *VÞ

s !
¼ 0: ð50Þ

Since m *V is assumed to be small, the function OðV0 þ m *VÞ can be expanded using the Taylor’s
series as

OðV0 þ m *VÞ ¼ OðV0Þ þ
qO
qV

����
V0


 *V: ð51Þ

Substituting expansion (51) into Eq. (50), taking into account that wV0 � 2OðV0Þ ¼ 0 (since V0

corresponds to the centre of the zone) and collecting the terms of the order m; the following
expression for *V is obtained:

*V ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3ðV0ÞQ4ðV0Þ
Q1ðV0ÞQ2ðV0Þ

s
w� 2

qO
qV

����
V0

 !,
: ð52Þ
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Fig. 3. Centre of the instability zone in the undamped case for two periods of the inhomogeneity: —, d ¼ 0:7m; – – –,

d ¼ 0:6m.
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The deviation m *V of the velocity from the centre of the zone is presented in Fig. 4 as a function of
the mass. This figure shows that the instability zone is very narrow, which makes it relatively easy
to avoid the parametric instability in practice.
Consider the effect of the viscosity in the foundation on the instability zone. The centre of the

zone is shown in Fig. 5 for nf ¼ 100Ns=m2 and two periods of the inhomogeneity. From this
figure, it can be seen that, in contrast to the undamped case, the instability does not arise if the
mass is smaller than a critical value that is depicted with the help of the bold (almost horizontal)
segment. Thus, analogous to the parametric resonance that is described by the Mathieu’s
equation, the effect of the viscosity leads to the shifting of the instability zone in the space of the
system parameters.
Besides shifting the zone, the viscosity of the foundation makes the zone shrink in the velocity

direction. However, for the chosen magnitude of the viscosity, this shrinkage is negligible.
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Fig. 4. Deviation of the boundaries of the instability zone from its centre: —, d ¼ 0:7m; – – –, d ¼ 0:6m.
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Fig. 5. Effect of the viscosity on the centre of the instability zone: —, d ¼ 0:7m; – – –, d ¼ 0:6m.
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7. Conclusions

In this paper, the stability of vibrations of a mass that moves uniformly along an Euler–
Bernoulli beam on a periodically inhomogeneous foundation has been studied. It has been shown
that these vibrations can become unstable due to the parametric resonance, which caused by the
periodic variation of the foundation stiffness under the moving mass.
The first instability zone has been studied analytically by a perturbation method with the

assumption that the variation of the foundation stiffness is small in comparison to the mean
value of this stiffness. It has been found that the centre of the instability zone is defined by the
condition that the doubled frequency of the mass vibrations on the homogeneous beam is close to
the frequency of the stiffness variation under the moving mass. This condition is fully analogous
to the condition of the parametric resonance in a system that is described by the Mathieu’s
equation.
It has been shown that the position of the instability zone in the system parameter depends

strongly on the magnitude of the moving mass and the period of the inhomogeneity. The larger
this period and/or the smaller the mass, the higher the velocity is at which the instability occurs. It
is important to underline that, in principle, parametric instability can occur at any non-zero
velocity of the mass. This is in contrast to the instability of a moving vehicle on a homogeneous
guideway, which can occur only if the velocity exceeds the minimum phase velocity of waves in the
guideway.
It has been found that the instability zone is very narrow with respect to the velocity of the

mass. This is a natural consequence of the assumption that the inhomogeneity is weak.
The effect of the viscosity of the foundation has been studied. It has been found that this effect

mainly leads to the shifting of the instability zone in the parameter space. This is also in perfect
correspondence with the effect of the viscosity on the classical parametric resonance.
In conclusion, it is worth noting that the model employed in this paper cannot be considered

as being able to describe the realistic train–track interaction. However, the main conclusion is
quite general. It can be formulated as follows. If the inhomogeneity of a guideway is weak and
periodic, then the parametric instability of a uniformly moving vehicle can occur. This instability
should be expected when the frequency of variation of the guideway parameters under the moving
vehicle is close to the doubled natural frequency of the vehicle as it moves uniformly along the
guideway.
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Appendix A

In this Appendix, the constants are defined that are employed in expressions (13), (18), (19)
and (20).
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The constants from expression (13):

Cþ
A1 ¼ �

AðkA
3 � kA

2 Þðk
A
4 � kA

2 Þ
ðkA

1 þ kA
2 � kA

3 � kA
4 Þðk

A
1 � kA

2 Þ
; C�

A1 ¼
AðkA

4 � kA
1 Þðk

A
4 � kA

2 Þ
ðkA

1 þ kA
2 � kA

3 � kA
4 Þðk

A
3 � kA

4 Þ
;

Cþ
A2 ¼

AðkA
3 � kA

1 Þðk
A
4 � kA

1 Þ
ðkA

1 þ kA
2 � kA

3 � kA
4 Þðk

A
1 � kA

2 Þ
; C�

A2 ¼ �
A kA

3 � kA
1

� �
kA
3 � kA

2

� �
ðkA

1 þ kA
2 � kA

3 � kA
4 Þðk

A
3 � kA

4 Þ
;

Cþ
B1 ¼ �

BðkB
3 � kB

2 Þðk
B
4 � kB

2 Þ
ðkB

1 þ kB
2 � kB

3 � kB
4 Þðk

B
1 � kB

2 Þ
; C�

B1 ¼
BðkB

4 � kB
1 Þðk

B
4 � kB

2 Þ
ðkB

1 þ kB
2 � kB

3 � kB
4 Þðk

B
3 � kB

4 Þ
;

Cþ
B2 ¼

BðkB
3 � kB

1 Þðk
B
4 � kB

1 Þ
ðkB

1 þ kB
2 � kB

3 � kB
4 Þðk

B
1 � kB

2 Þ
; C�

B2 ¼ �
BðkB

3 � kB
1 Þðk

B
3 � kB

2 Þ
ðkB

1 þ kB
2 � kB

3 � kB
4 Þðk

B
3 � kB

4 Þ
:

The constants from expressions (18) and (19):

Cþ
11 ¼

�kf Cþ
A1

2EIwðwþ 2kA
1 Þððk

A
1 Þ

2 þ ðkA
1 þ wÞ2Þ

; Cþ
12 ¼

�kf Cþ
A1

2EIwðw� 2kA
1 Þððk

A
1 Þ

2 þ ðkA
1 � wÞ2Þ

;

Cþ
21 ¼

�kf Cþ
A2

2EIwðwþ 2kA
2 Þððk

A
2 Þ

2 þ ðkA
2 þ wÞ2Þ

; Cþ
22 ¼

�kf Cþ
A2

2EIwðw� 2kA
2 Þððk

A
2 Þ

2 þ ðkA
2 � wÞ2Þ

;

Cþ
31 ¼

�kf Cþ
B1

2EIwðwþ 2kB
1 Þððk

B
1 Þ

2 þ ðkB
1 þ wÞ2Þ

; Cþ
32 ¼

�kf Cþ
B1

2EIwðw� 2kB
1 Þððk

B
1 Þ

2 þ ðkB
1 � wÞ2Þ

;

Cþ
41 ¼

�kf Cþ
B2

2EIwðwþ 2kB
2 Þððk

B
2 Þ

2 þ ðkB
2 þ wÞ2Þ

; Cþ
42 ¼

�kf Cþ
B2

2EIwðw� 2kB
2 Þððk

B
2 Þ

2 þ ðkB
2 � wÞ2Þ

;

C�
11 ¼

�kf C�
A1

2EIwðwþ 2kA
3 Þððk

A
3 Þ

2 þ ðkA
3 þ wÞ2Þ

; C�
12 ¼

�kf C�
A1

2EIwðw� 2kA
3 Þððk

A
3 Þ

2 þ ðkA
3 � wÞ2Þ

;

C�
21 ¼

�kf C�
A2

2EIwðwþ 2kA
4 Þððk

A
4 Þ

2 þ ðkA
4 þ wÞ2Þ

; C�
22 ¼

�kf C�
A2

2EIwðw� 2kA
4 Þððk

A
4 Þ

2 þ ðkA
4 � wÞ2Þ

;

C�
31 ¼

�kf C�
B1

2EIwðwþ 2kB
3 Þððk

B
3 Þ

2 þ ðkB
3 þ wÞ2Þ

; C�
32 ¼

�kf C�
B1

2EIwðw� 2kB
3 Þððk

B
3 Þ

2 þ ðkB
3 � wÞ2Þ

;

C�
41 ¼

�kf C�
B2

2EIwðwþ 2kB
4 Þððk

B
4 Þ

2 þ ðkB
4 þ wÞ2Þ

; C�
42 ¼

�kf C�
B2

2EIwðw� 2kB
4 Þððk

B
4 Þ

2 þ ðkB
4 � wÞ2Þ

:

The constants from expression (20):

D11 ¼ iððkA
1 þ wÞCþ

11 þ ðkA
2 þ wÞCþ

21 � ðkA
3 þ wÞC�

11 � ðkA
4 þ wÞC�

21Þ;

D12 ¼ iððkA
1 � wÞCþ

12 þ ðkA
2 � wÞCþ

22 � ðkA
3 � wÞC�

12 � ðkA
4 � wÞC�

22Þ;

D13 ¼ iððkB
1 þ wÞCþ

31 þ ðkB
2 þ wÞCþ

41 þ ðkB
3 þ wÞC�

31 þ ðkB
4 þ wÞC�

41Þ;

D14 ¼ iððkB
1 � wÞCþ

32 þ ðkB
2 � wÞCþ

42 þ ðkB
3 � wÞC�

32 � ðkB
4 þ wÞC�

42Þ;
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D21 ¼ �ððkA
1 þ wÞ2Cþ

11 þ ðkA
2 þ wÞ2Cþ

21 � ðkA
3 þ wÞ2C�

11 � ðkA
4 þ wÞ2C�

21Þ;

D22 ¼ �ððkA
1 � wÞ2Cþ

12 þ ðkA
2 � wÞ2Cþ

22 � ðkA
3 � wÞ2C�

12 � ðkA
4 � wÞ2C�

22Þ;

D23 ¼ �ððkB
1 þ wÞ2Cþ

31 þ ðkB
2 þ wÞ2Cþ

41 þ ðkB
3 þ wÞ2C�

31 þ ðkB
4 þ wÞ2C�

41Þ;

D24 ¼ �ððkB
1 � wÞ2Cþ

32 þ ðkB
2 � wÞ2Cþ

42 þ ðkB
3 � wÞ2C�

32 � ðkB
4 þ wÞ2C�

42Þ;

D31 ¼ �ðCþ
11 þ Cþ

21Þ; D32 ¼ �ðCþ
12 þ Cþ

22Þ; D33 ¼ �ðCþ
31 þ Cþ

41Þ; D34 ¼ �ðCþ
32 þ Cþ

42Þ;

D41 ¼ iððkA
1 þ wÞ3Cþ

11 þ ðkA
2 þ wÞ3Cþ

21 � ðkA
3 þ wÞ3C�

11 � ðkA
4 þ wÞ3C�

21Þ;

D42 ¼ iððkA
1 � wÞ3Cþ

12 þ ðkA
2 � wÞ3Cþ

22 � ðkA
3 � wÞ3C�

12 � ðkA
4 � wÞ3C�

22Þ;

D43 ¼ iððkB
1 þ wÞ3Cþ

31 þ ðkB
2 þ wÞ3Cþ

41 þ ðkB
3 þ wÞ3C�

31 þ ðkB
4 þ wÞ3C�

41Þ;

D44 ¼ iððkB
1 � wÞ3Cþ

32 þ ðkB
2 � wÞ3Cþ

42 þ ðkB
3 � wÞ3C�

32 � ðkB
4 þ wÞ3C�

42Þ:

Appendix B

The system of equations that is obtained by substitution of expressions (26) into the system of
Eq. (2) followed by collection of terms of the order m0 reads

For x > Vt;

eitðOþmdÞ
X2
j¼1

Cþ
Ajðmx; mtÞeik

A
j ðVt�xÞð�rAcsðOþ kA

j VÞ2 þ EIðkA
j Þ

4 þ kf Þ

þ e�itðOþmdÞ
X2
j¼1

Cþ
Bjðmx;mtÞeik

B
j
ðVt�xÞð�rAcsð�Oþ kB

j V Þ2 þ EIðkB
j Þ

4 þ kf Þ ¼ 0: ðB:1Þ

For xoVt;

eitðOþmdÞ
X2
j¼1

C�
Ajðmx; mtÞeik

A
jþ2

ðVt�xÞð�rAcsðOþ kA
jþ2V Þ2 þ EIðkA

jþ2Þ
4 þ kf Þ

þ e�itðOþmdÞ
X2
j¼1

C�
Bjðmx;mtÞeik

B
jþ2

ðVt�xÞð�rAcsð�Oþ kA
jþ2V Þ2 þ EIðkB

jþ2Þ
4 þ kf Þ ¼ 0: ðB:2Þ

For x ¼ Vt;

X2
j¼1

Cþ
AjðmVt;mtÞeitðOþmdÞ þ

X2
j¼1

Cþ
BjðmVt; mtÞe�itðOþmdÞ

¼
X2
j¼1

C�
AjðmVt;mtÞeitðOþmdÞ þ

X2
j¼1

C�
BjðmVt;mtÞe�itðOþmdÞ: ðB:3Þ
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X2
j¼1

kA
j Cþ

AjðmVt; mtÞeitðOþmdÞ þ
X2
j¼1

kB
j Cþ

BjðmVt;mtÞe�itðOþmdÞ

¼
X2
j¼1

kA
jþ2C

�
AjðmVt;mtÞeitðOþmdÞ þ

X2
j¼1

kB
jþ2C

�
BjðmVt; mtÞe�itðOþmdÞ; ðB:4Þ

X2
j¼1

ðkA
j Þ

2Cþ
AjðmVt; mtÞeitðOþmdÞ þ

X2
j¼1

ðkB
j Þ

2Cþ
BjðmVt; mtÞe�itðOþmdÞ

¼
X2
j¼1

ðkA
jþ2Þ

2C�
AjðmVt;mtÞeitðOþmdÞ þ

X2
j¼1

ðkB
jþ2Þ

2C�
BjðmVt; mtÞe�itðOþmdÞ; ðB:5Þ

X2
j¼1

Cþ
AjðmVt;mtÞeitðOþmdÞ þ

X2
j¼1

Cþ
BjðmVt; mtÞe�itðOþmdÞ ¼ AðmtÞeitðOþmdÞ þ BðmtÞe�itðOþmdÞ; ðB:6Þ

EI
X2
j¼1

iðkA
j Þ

3Cþ
AjðmVt; mtÞeitðOþmdÞ þ

X2
j¼1

iðkB
j Þ

3Cþ
BjðmVt;mtÞe�itðOþmdÞ

 

�
X2
j¼1

iðkA
jþ2Þ

3C�
AjðmVt; mtÞeitðOþmdÞ �

X2
j¼1

iðkB
jþ2Þ

3C�
BjðmVt;mtÞe�itðOþmdÞ

!

¼ mO2ðAðmtÞeitðOþmdÞ þ BðmtÞe�itðOþmdÞÞ: ðB:7Þ

Obviously, Eqs. (B.1) and (B.2) are satisfied automatically, since the wavenumbers kA;B
1;2;3;4 are the

roots of the dispersion Eq. (8). The Eqs. (B.3)–(B.7) can be subdivided into two systems of
equations, one containing the terms proportional to eitðOþmdÞ and the other one with the terms
proportional to e�itðOþmdÞ: The natural frequency O is the eigenvalue of the determinants of both
these systems. Therefore, Eqs. (B.3)–(B.7), as well as Eqs. (B.1) and (B.2) are satisfied
independently of the choice of the amplitudes C7

Aj and C7
Bj :

Appendix C

In this appendix, the constants are defined that are employed in expressions (38) and (39).

*Cþ
11 ¼

�kf Cþ
A1ðmx;mtÞ

2EIwðwþ 2kA
1 Þððk

A
1 Þ

2 þ ðkA
1 þ wÞ2Þ

; *Cþ
12 ¼

�kf Cþ
A2ðmx;mtÞ

2EIwðwþ 2kA
2 Þððk

A
2 Þ

2 þ ðkA
2 þ wÞ2Þ

;

*Cþ
21 ¼

�kf Cþ
B1ðmx;mtÞ

2EIwðw� 2kB
1 Þððk

B
1 Þ

2 þ ðkB
1 � wÞ2Þ

; *Cþ
22 ¼

�kf Cþ
B2ðmx;mtÞ

2EIwðw� 2kB
2 Þððk

B
2 Þ

2 þ ðkB
2 � wÞ2Þ

;
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*C�
11 ¼

�kf C�
A1ðmx;mtÞ

2EIwðwþ 2kA
3 Þððk

A
3 Þ

2 þ ðkA
3 þ wÞ2Þ

; *C�
12 ¼

�kf C�
A2ðmx;mtÞ

2EIwðwþ 2kA
4 Þððk

A
4 Þ

2 þ ðkA
4 þ wÞ2Þ

;

*C�
21 ¼

�kf C�
B1ðmx;mtÞ

2EIwðw� 2kB
3 Þððk

B
3 Þ

2 þ ðkB
3 � wÞ2Þ

; *C�
22 ¼

�kf C�
B2 mx;mtð Þ

2EIwðw� 2kB
4 Þððk

B
4 Þ

2 þ ðkB
4 � wÞ2Þ

:

Appendix D

In this appendix, the relations are presented that are obtained by substitution of expressions
(42) into Eqs. (B.3)–(B.6). Further, expressions are given for the constants Dj; j ¼ 1;y; 6 that
are employed in the equations.
Relations obtained by substituting (42) into Eqs. (B.3)–(B.6):

qA
1 � pA

1 V ¼ qA
2 � pA

2 V ¼ qB
1 � pB

1 V ¼ qB
2 � pB

2 V ¼ qA
3 � pA

3 V

¼ qA
4 � pA

4 V ¼ qB
3 � pB

3 V ¼ qB
4 � pB

4 V ¼ s;

Cþ
A10 ¼ �

A0ðkA
3 � kA

2 Þðk
A
4 � kA

2 Þ
ðkA

1 þ kA
2 � kA

3 � kA
4 Þðk

A
1 � kA

2 Þ
; C�

A10 ¼
A0ðkA

4 � kA
1 Þðk

A
4 � kA

2 Þ
ðkA

1 þ kA
2 � kA

3 � kA
4 Þðk

A
3 � kA

4 Þ
;

Cþ
A20 ¼

A0ðkA
3 � kA

1 Þðk
A
4 � kA

1 Þ
ðkA

1 þ kA
2 � kA

3 � kA
4 Þðk

A
1 � kA

2 Þ
; C�

A20 ¼ �
A0ðkA

3 � kA
1 Þðk

A
3 � kA

2 Þ
ðkA

1 þ kA
2 � kA

3 � kA
4 Þðk

A
3 � kA

4 Þ
;

Cþ
B10 ¼ �

B0ðkB
3 � kB

2 Þðk
B
4 � kB

2 Þ
ðkB

1 þ kB
2 � kB

3 � kB
4 Þðk

B
1 � kB

2 Þ
; C�

B10 ¼
B0ðkB

4 � kB
1 Þðk

B
4 � kB

2 Þ
ðkB

1 þ kB
2 � kB

3 � kB
4 Þðk

B
3 � kB

4 Þ
;

Cþ
B20 ¼

B0ðkB
3 � kB

1 Þðk
B
4 � kB

1 Þ
ðkB

1 þ kB
2 � kB

3 � kB
4 Þðk

B
1 � kB

2 Þ
; C�

B20 ¼ �
B0ðkB

3 � kB
1 Þðk

B
3 � kB

2 Þ
ðkB

1 þ kB
2 � kB

3 � kB
4 Þðk

B
3 � kB

4 Þ
: ðD:1Þ

The constants from expression (43):

Q1 ¼ � 2mOðkA
1 þ kA

2 � kA
3 � kA

4 Þ

þ
3iEIrAcs

ðkA
1 � kA

2 Þ
�
ðkA

1 V þ OÞðkA
1 Þ

2ðkA
3 � kA

2 Þðk
A
4 � kA

2 Þ

ðrAcsV ðkA
1 V þ OÞ þ 2EIðkA

1 Þ
3Þ

þ
ðkA

2 V þ OÞðkA
2 Þ

2ðkA
3 � kA

1 Þðk
A
4 � kA

1 Þ

ðrAcsV ðkA
2 V þ OÞ þ 2EIðkA

2 Þ
3Þ

 !

�
3iEIrAcs

ðkA
3 � kA

4 Þ
ðkA

3 V þ OÞðkA
3 Þ

2ðkA
4 � kA

1 Þðk
A
4 � kA

2 Þ

ðrAcsV ðkA
3 V þ OÞ þ 2EIðkA

3 Þ
3Þ

�
ðkA

4 V þ OÞðkA
4 Þ

2ðkA
3 � kA

1 Þðk
A
3 � kA

2 Þ

ðrAcsV ðkA
4 V þ OÞ þ 2EIðkA

4 Þ
3Þ

 !
;

Q2 ¼ 2mOðkB
1 þ kB

2 � kB
3 � kB

4 Þ

þ
3iEIrAcs

ðkB
1 � kB

2 Þ
�
ðkB

1 V � OÞðkB
1 Þ

2ðkB
3 � kB

2 Þðk
B
4 � kB

2 Þ

ðrAcsV ðkB
1 V � OÞ þ 2EIðkB

1 Þ
3Þ

þ
ðkB

2 V � OÞðkB
2 Þ

2ðkB
3 � kB

1 Þðk
B
4 � kB

1 Þ

ðrAcsV ðkB
2 V � OÞ þ 2EIðkB

2 Þ
3Þ

 !

�
3iEIrAcs

ðkB
3 � kB

4 Þ
ðkB

3 V � OÞðkA
3 Þ

2ðkB
4 � kB

1 Þðk
B
4 � kB

2 Þ

ðrAcsVðkB
3 V � OÞ þ 2EIðkB

3 Þ
3Þ

�
ðkB

4 V � OÞðkB
4 Þ

2ðkB
3 � kB

1 Þðk
B
3 � kB

2 Þ

ðrAcsV ðkB
4 V � OÞ þ 2EIðkB

4 Þ
3Þ

 !
;
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Q3 ¼ �
ikf

ðkA
1 � kA

2 Þ
�

ðkA
1 þ wÞ3ðkA

3 � kA
2 Þðk

A
4 � kA

2 Þ

2wðwþ 2kA
1 Þððk

A
1 Þ

2 þ ðkA
1 þ wÞ2Þ

þ
ðkA

2 þ wÞ3ðkA
3 � kA

1 Þðk
A
4 � kA

1 Þ

2wðwþ 2kA
2 Þððk

A
2 Þ

2 þ ðkA
2 þ wÞ2Þ

 !

þ
ikf

ðkA
3 � kA

4 Þ
ðkA

3 þ wÞ3ðkA
4 � kA

1 Þðk
A
4 � kA

2 Þ

2wðwþ 2kA
3 Þððk

A
3 Þ

2 þ ðkA
3 þ wÞ2Þ

�
ðkA

4 þ wÞ3ðkA
3 � kA

1 Þðk
A
3 � kA

2 Þ

2wðwþ 2kA
4 Þððk

A
4 Þ

2 þ ðkA
4 þ wÞ2Þ

 !
;

Q4 ¼
ikf

ðkB
1 � kB

2 Þ
�

ðkB
1 � wÞ3ðkB

3 � kB
2 Þðk

B
4 � kB

2 Þ

2wðw� 2kB
1 Þððk

B
1 Þ

2 þ ðkB
1 � wÞ2Þ

þ
ðkB

2 � wÞ3ðkB
3 � kB

1 Þðk
B
4 � kB

1 Þ

2wðw� 2kB
2 Þððk

B
2 Þ

2 þ ðkB
2 � wÞ2Þ

 !

�
ikf

ðkB
3 � kB

4 Þ
ðkB

3 � wÞ3ðkB
4 � kB

1 Þðk
B
4 � kB

2 Þ

2wðw� 2kB
3 Þððk

B
3 Þ

2 þ ðkB
3 � wÞ2Þ

�
ðkB

4 � wÞ3ðkB
3 � kB

1 Þðk
B
3 � kB

2 Þ

2wðw� 2kB
4 Þððk

B
4 Þ

2 þ ðkB
4 � wÞ2Þ

 !
:

The constants from expression (46):

Q5 ¼ �
3nfrAcsV

ðkA
1 � kA

2 Þ
�

ðkA
1 V þ OÞ2ðkA

3 � kA
2 Þðk

A
4 � kA

2 Þ

2kA
1 ðrAcsV ðkA

1 V þ OÞ þ 2EIðkA
1 Þ

3Þ
þ

ðkA
2 V þ OÞ2ðkA

3 � kA
1 Þðk

A
4 � kA

1 Þ

2kA
2 ðrAcsV ðkA

2 V þ OÞ þ 2EIðkA
2 Þ

3Þ

 !

þ
3nfrAcsV

ðkA
3 � kA

4 Þ
ðkA

3 V þ OÞ2ðkA
4 � kA

1 Þðk
A
4 � kA

2 Þ

2kA
3 ðrAcsVðkA

3 V þ OÞ þ 2EIðkA
3 Þ

3Þ
�

ðkA
4 V þ OÞ2ðkA

3 � kA
1 Þðk

A
3 � kA

2 Þ

2kA
4 ðrAcsV ðkA

4 V þ OÞ þ 2EIðkA
4 Þ

3Þ

 !

Q6 ¼
3nf rAcsV

ðkB
1 � kB

2 Þ
�

ðkB
1 V � OÞ2ðkB

3 � kB
2 Þðk

B
4 � kB

2 Þ

2kB
1 ðrAcsV ðkB

1 V � OÞ þ 2EIðkB
1 Þ

3Þ
þ

ðkB
2 V � OÞ2ðkB

3 � kB
1 Þðk

B
4 � kB

1 Þ

2kB
2 ðrAcsV ðkB

2 V � OÞ þ 2EIðkB
2 Þ

3Þ

 !

�
3nf rAcsV

ðkB
3 � kB

4 Þ
ðkB

3 V � OÞ2ðkB
4 � kB

1 Þðk
B
4 � kB

2 Þ

2kB
3 ðrAcsV ðkB

3 V � OÞ þ 2EIðkB
3 Þ

3Þ
�

ðkB
4 V � OÞ2ðkB

3 � kB
1 Þðk

B
3 � kB

2 Þ

2kB
4 ðrAcsV ðkB

4 V � OÞ þ 2EIðkB
4 Þ

3Þ

 !
;

Appendix E. Nomenclature

Acs the cross-sectional area of the beam
A;B;C;D the wave amplitudes
d the period of the inhomogeneity
E Young’s modulus
i ¼

ffiffiffiffiffiffiffi
�1

p
I the moment of inertia of the beam’s cross-section
kf the mean stiffness of the foundation
kn the roots of the dispersion relation which possess a positive imaginary part
kA;B

n the wavenumbers
m the mass
Qj constants
t time
V the velocity of motion
w the vertical deflection of the beam relative to its equilibrium position
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w0 the vertical deflection of the mass relative to its equilibrium position
x the horizontal coordinate
w the wave number of inhomogeneity
d the mistuning
dðyÞ the Dirac’s delta function
m the dimensionless small parameter
nf the viscosity of foundation
r the mass density of the beam material
O the radial frequency
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